Machine Learning and Data Mining
2008-2009
-
IMT4631
- 5sp
Forventet læringsutbytte
The course offers students a deeper understanding of the theories, methods, and algorithm in machine learning as well as the application of those.
Emnets temaer
1. Symbolic Learning
2. Statistical Learning
3. Artificial Neural Networks
4. Support Vector Machines
5. Cluster Analysis
6. Fuzzy Logic
7. Evolutionary Computation
8. Hybrid Intelligent Methods
Pedagogiske metoder
Forelesninger
Gruppearbeid
Lab.øvelser
Oppgaveløsning
Annet
Pedagogiske metoder (fritekst)
Annet - homework
Vurderingsformer
Skriftlig eksamen, 3 timer
Annet
Vurderingsformer
* Written exam, 3 hours (60%)
* Homework evaluation (4x10%)
All parts must be passed.
Karakterskala
Bokstavkarakterer, A (best) - F (ikke bestått)
Sensorordning
Evaluated by the lecturer(s)
Utsatt eksamen (tidl. kontinuasjon)
The whole course must be repeated.
Tillatte hjelpemidler (gjelder kun skriftlig eksamen)
Approved calculator
Obligatoriske arbeidskrav
None.
Læremidler
Basic Textbook: Machine Learning and Data Mining: Introduction to Principles
and Algorithms (Paperback) by Igor Kononenko (Author), Matjaz Kukar (Author)
+ selected research papers
Additional Literature for interested readers:
Pattern Recognition and Machine Learning (Information Science and
Statistics) by Christopher M. Bishop
Pattern Classification (2nd Edition) by Richard O. Duda, Peter E. Hart, and
David G. Stork
Machine Learning by Tom M. Mitchell